The adenovirus E4orf6 protein inhibits DNA double strand break repair and radiosensitizes human tumor cells in an E1B-55K-independent manner.
نویسندگان
چکیده
The adenoviral protein E4orf6 has been shown to inhibit both in vitro V(D)J recombination and adenoviral DNA concatenation, two processes that rely on cellular DNA double strand break repair (DSBR) proteins. Most of the known activities of E4orf6 during adenoviral infection require its interaction with another adenoviral protein, E1B-55K. Here we report that E4orf6, stably expressed in RKO human colorectal carcinoma cells or transiently expressed by adenoviral vector in U251 human glioblastoma cells, inhibits DSBR and induces significant radiosensitization in the absence of E1B-55K. Expression of a mutant form of E4orf6 (L245P) failed to radiosensitize RKO cells. E4orf6 reduced DSBR capacity in transfected and infected cells, as measured by sublethal DNA damage repair assay and phosphorylated H2AX (gamma-H2AX) levels, respectively. Consistent with the inhibitory effect of E4orf6 on DSBR, expression of wild-type but not mutant E4orf6 reduced recovery of a transfected, replicating reporter plasmid (pSP189) in 293 cells but did not increase the mutation frequency measured in the reporter plasmid. The kinase activity of DNA-PKcs (the DNA-dependent protein kinase catalytic subunit) toward heterologous substrates was not affected by expression of E4orf6; however, autophosphorylation of DNA-PKcs at Thr-2609 following ionizing radiation was prolonged in the presence of E4orf6 when compared with control-infected cells. Our results demonstrate for the first time that E4orf6 expression hinders the cellular DNA repair process in mammalian cells in the absence of E1B-55K or other adenoviral genes and suggest that viral-mediated delivery of E4orf6, combined with localized external beam radiation, could be a useful approach for the treatment of radioresistant solid tumors such as glioblastomas.
منابع مشابه
Expression of the adenovirus E4 34k oncoprotein inhibits repair of double strand breaks in the cellular genome of a 293-based inducible cell line.
The human adenovirus E4 ORF 6 34 kDa oncoprotein (E4 34k), in concert with the 55 kDa product of E1b, prevents concatenation of viral genomes in infected cells, inhibits the repair of double strand breaks (DSBs) in the viral genome, and inhibits V(D)J recombination in a plasmid transfection assay. These activities are consistent with a general inhibition by the E4 34k and E1b 55k proteins of DS...
متن کاملRUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis.
The localization of the adenovirus E1B-55K-E4orf6 protein complex is critical for its function. Prior studies demonstrated that E4orf6 directs the nuclear localization of E1B-55K in human cells and in rodent cells that contain part of human chromosome 21. We show here that the relevant activity on chromosome 21 maps to RUNX1. RUNX1 proteins are transcription factors that serve as scaffolds for ...
متن کاملThe adenovirus type 5 E1B-55K oncoprotein actively shuttles in virus-infected cells, whereas transport of E4orf6 is mediated by a CRM1-independent mechanism.
The E1B-55K and E4orf6 proteins of adenovirus type 5 are involved in viral mRNA export. Here we demonstrate that adenovirus infection does not inhibit the function of the E1B-55K nuclear export signal and that E1B-55K also shuttles in infected cells. Even during virus infection, E1B-55K was exported by the leptomycin B-sensitive CRM1 pathway, whereas E4orf6 transport appeared to be mediated by ...
متن کاملComparison of protein expression during wild-type, and E1B-55k-deletion, adenovirus infection using quantitative time-course proteomics
Adenovirus has evolved strategies to usurp host-cell factors and machinery to facilitate its life cycle, including cell entry, replication, assembly and egress. Adenovirus continues, therefore, to be an important model system for investigating fundamental cellular processes. The role of adenovirus E1B-55k in targeting host-cell proteins that possess antiviral activity for proteasomal degradatio...
متن کاملLoss of DNA ligase IV prevents recognition of DNA by double-strand break repair proteins XRCC4 and XLF
The repair of DNA double-strand breaks by nonhomologous end-joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Central to the molecular mechanism of NHEJ is DNA ligase IV/XRCC4/XLF complex, which rejoins the DNA. During adenovirus (Ad5) infection, ligase IV is targeted for degradation in a process that requires expression of the viral E1B 55k and E4 34k protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 2 شماره
صفحات -
تاریخ انتشار 2005